The Evolution Of Prototype Architectures Developed
For The Scheduling Software Integration Project

Frank Riddick Christophe LeCapitaine
Computer Scientist Guest Researcher
Manufacturing Engineering Laboratory Manufacturing Engineering Laboratory
National Institute of Standards and Technology National Institute of Standards and Technology
Gaithersburg, MD USA Gaithersburg, MD USA

Abstract

The National Institute of Standards and Technology (NIST) is collaborating with vendors, users, and
university researchers to develop a virtual manufacturing testbed. This testbed contains a number of
software research prototypes, which address both optimization and integration issues for a wide range of
software applications, including scheduling. This report describes the evolution and current state of a
prototype that integrates scheduling applications with data collection systems.

1 Introduction

Manufacturing plays a vital role in the world’s economy. In the United States alone, there are tens of
thousands of factories producing metal-fabricated parts. These factories employ millions of people and
ship billions of dollars worth of products every year [17]. One of the daily problems faced by the
managers of these factories is scheduling. Discrete-event, simulation-based scheduling packages are
used widely by factory managers around the world. These packages include a large number of pre-
defined dispatching rules that will produce schedules for both simple and complex production
environments. Users can extend these canned rules by adding their own factory-specific rules.

The effectiveness of these packages is limited in two ways. First, the dispatching rules are only
guaranteed to produce feasible schedules. Typically, the notion of optimality, with respect to one or more
performance measures, is not even considered. In fact, the user must supply all knowledge about which
rule(s) to use to achieve a desired performance measure(s). Currently, this knowledge can only be
derived from extensive experimentation with combinations of the pre-defined rules provided by packages.
Second, it is difficult to integrate these packages with current shop floor data collection packages. This
means that an extensive data translation effort is necessary to import current information into the
scheduling application. Such efforts are costly, error-prone, and time consuming.

The National Institute of Standards and Technology (NIST) is collaborating with vendors, users, and
university researchers to develop a virtual manufacturing testbed. This testbed contains a number of
software prototypes that address both optimization and integration issues for a wide range of software
applications, including scheduling [1]. The approach used in and the status of the optimization work
related to scheduling can be found in [2] and [3] respectively.

This report describes the research that has led to the current scheduling prototype. It is organized as
follows. Section 2 provides some background information. Section 3 describes some initial
implementations done by NIST and other project participants. Section 4 describes the architecture of the
current prototype. Section 5 summarizes the work and discusses possible future directions for the
research.

2 Background

NIST has been involved in manufacturing integration research for many years. This research began
in the early 1980s, when automated manufacturing equipment and computers were first introduced into
flexible manufacturing systems. The impetus for NIST’'s research program was the need for a generic
factory control model upon which to base the integration of computers and equipment. NIST developed a
hierarchical control model [4] and implemented that model in the Automated Manufacturing Research
Facility (AMRF) [5]. Initial efforts to integrate scheduling into that model are described in [6,7].

The physical layout of the AMRF consisted of several robot-tended machining stations, a cleaning and
deburring station, an inspection station, and a material handling system. To control the flow of jobs and
materials through the facility, NIST developed a factory control system [4], which was supported by a
distributed database management system and a network communications system [8]. The AMRF
incorporated commercially available manufacturing equipment and computer hardware from many
vendors, but much of the software was developed internally. The intention was that substitutions of
commercial software would occur whenever it became available. Although it was highly innovative and
immensely successful, the AMRF was subject to the same kinds of equipment problems faced by
factories across the country. These problems increased both the time and the cost of integration testing.

To continue research in the area of manufacturing system integration, in 1994 NIST embarked on a
new program called SIMA, Systems Integration for Manufacturing Applications [9-11]. SIMA is building
upon the experience gained in the AMRF to accelerate the application of information technology to
manufacturing environments. The SIMA Program works with U.S. industry to:

develop standards for information exchange and interface protocols addressing interoperability
problems in manufacturing systems.

provide online access to NIST-resident capabilities supporting manufacturing technologies.
develop collaboration technologies enabling industry researchers, practitioners, and NIST staff to
remotely work together.

These efforts will allow manufacturing industries to make use of computer networks as a mechanism
for communicating product and process data among various manufacturing activities such as
product/process design, analysis, planning, scheduling, production, and quality control. The development
of information interfaces between different manufacturing applications and between applications and their
users will improve integration and thereby usability of these systems.

3 Scheduling Integration Project

During the last 10 years, many manufacturing companies have invested heavily in computer hardware
and software that make it possible to collect data about the events on the shop floor literally as they are
happening. This real-time data collection makes it possible to “close the loop” for operations management
just as concurrent engineering is “closing the loop” for product design. The integration of computer software
that collects real-time data with the computer software that uses the collected data continues to be a major
problem. While there is a general understanding about which tools need the collected information, there is
no agreement on the content or format of that information.

A two-year project was created within SIMA and jointly funded by the Navy Manufacturing Technology
(MANTECH) program to develop generic interface specifications for, and to demonstrate the integration of,
scheduling and shop floor data collection tools. In this project, shop floor operations will be demonstrated
through the use of a discrete-event simulation of a job shop. This differs from the approach used in the
AMREF of creating a real job shop as a part of the integration project. This project is a collaborative effort
between vendors, users, academia, and NIST. It has two major benefits. First, the interface specifications
will reduce the cost of integration for both manufacturers and vendors. Second, the integrated prototype will
allow manufacturers, vendors, and academic researchers the opportunity to test the capabilities of a single
scheduling technique on different simulated shops, and to test different scheduling techniques on the same
simulated shop. Realizing these benefits has the potential to provide enhanced capabilities to manufacturers
to improve shop performance and throughput.

3.1 Conceptual Model Development

Project participants met to develop a conceptual model of the factory entities necessary to integrate
scheduling applications with shop floor data collection applications. The goal of this model was to specify
a minimal set of the entities associated with factory operations, and not to define a comprehensive model
of all factory operational information. This approach was required partly by the limited reporting
capabilities of commercial-off-the-shelf (COTS) shop floor data collection systems and partly because

much of the information that is needed for scheduling does not need to be communicated to other factory
applications.

The project team decided that a significant level of integration could be achieved through: (1) the
definition of entities to represent elements of the factory (Loads, Resources, Buffers, and Materials); and
(2) the definition of status message entities that define requests to create, change, or delete instances of
the factory entities. Loads are groups of parts that are being operated upon by the Resources of the
factory. Resources are the operators, machines, tools, and fixtures used in production to change the
parts contained in the Loads into finished products. Buffers are temporary holding or staging areas for
Loads. Materials represent quantities of consumable items that are tracked by the level available for
production. Twelve status message entities, such as CreateLoad and ChangeResource, were defined to
specify that instances of the four factory entities could be created, changed, or deleted. Additional
information concerning these models can be found in [12].

3.2 Initial Prototype Development Efforts

Three prototype implementations were done by project participants, two by vendors and one by NIST
personnel. The factory entities and status messages defined in [12] were used as a basis for the
architectures for the prototypes. The use of COTS software in developing the prototypes was encouraged
rather than developing the applications completely from scratch. Each prototype provided functional
components for scheduling, dispatching, and data collection/reporting. Some mechanism for persistent
storage of status information was also required so that successive executions of the scheduling
application could use current shop floor information as the basis for creating new schedules. In addition,
functionality to simulate the execution of the schedule information by the job shop was required. Finally,
consideration was given to providing mechanisms for exchanging the factory information with other
manufacturing systems, such as enterprise resource planning (ERP) systems. In the following section,
the three implementations will be examined.

3.2.1 Vendor 1 Prototype Architecture

Figure 1 shows the architecture of the vendor 1 prototype. In this prototype, vendor 1 used its COTS
scheduling application to provide the scheduling functionality. When schedules are produced, a file
passing mechanism is used to pass the information to a commercial manufacturing execution system
(MES) that provides the job dispatching functionality for the shop floor. The MES system also provides

MES Job Shop
Scheduler Schedules $| Dispatcher

MES Data Collector

- Extract
Update Utility I‘ Current Status

Update
Scheduler

Information v

MES Data Store

Scheduler Status Messages I

Data Store
Factory Status

Preformatted Updates
Scheduler Updates

Figure 1 - Vendor 1 Prototype Architecture

the data collection functionality. The functionality of the job shop is simulated by the execution of a small
set of canned routines that translate the manufacturing instructions (work orders) produced by the
dispatcher into the events that would occur from the execution of those instructions. The MES Data
Collector stores these events in the MES system database. @ The MES system database has been
extended with tables to hold factory status information. Database triggers are employed to automatically
translate MES data updates into status messages that cause the factory status extensions to the MES
database to be updated. In addition, when any of the tables of the factory status extensions are updated,
database triggers fire that create preformatted schedule update instructions in another extension to the
MES database. These schedule update instructions are accessed by the update utility, an extension to
the scheduling application, which uses them to update the scheduling application’s database with current
information about the status of the shop floor. The update utility automatically runs to update the
database before the creation of new schedules by the scheduling application.

The key feature of this architectural approach is its extensive use of COTS software and its leveraging
of existing database technologies. A drawback with this approach is the factory status information is
somewhat hidden as an extension of the MES system’s database, which makes it harder to integrate with
other manufacturing applications.

3.2.2 Vendor 2 Prototype Architecture

Figure 2 shows the architecture of the vendor 2 prototype. In this prototype, vendor 2 used its COTS
scheduling application to provide the scheduling functionality. When schedules are produced, a file
passing mechanism is used to pass the information to a simple dispatching program. The dispatching
program creates work orders for each machine resource in the job shop. The functionality of the job shop
is simulated by the execution of a small set of canned routines that translate the work orders produced by
the dispatcher into the events that would occur from the execution of those work orders. These events
are passed to a COTS data collection system that converts the information into status messages and
stores the status messages in a file as ASCII strings. This file of status messages is read by the update
utility, an extension to this vendor’s scheduling application. In this prototype, the update utility uses the
file of status messages to update both the scheduling application’s database and a separate relational
database that holds the factory status information in accordance with the conceptual model described
above. The update utility automatically runs to update the database before the creation of new schedules
by the scheduling application.

This architecture also makes extensive use of COTS software and leverages existing database

Schedules Dispatcher Work Orders
Scheduler |=cnedules o, p > Job Shop
Update Utility <
Updated Information
Updated
Information Data
Status Messages Collection

Scheduler Factory System
Data Store Status

Figure 2 - Vendor 2 Prototype Architecture

technologies. It overcomes a drawback of the vendor 1 architecture by having a more open, modular
approach that is conducive to integration with other manufacturing applications.

3.2.3 Initial NIST Prototype Architecture

Figure 3 shows the architecture of the initial NIST prototype. NIST levied upon itself the additional
requirement of being able to work with multiple scheduling applications. So, in this prototype, the
scheduling functionality can be provided by either vendor's COTS scheduling application. When
schedules are produced, a file passing mechanism is used to pass the information to the same
dispatching program used in the vendor 2 prototype that creates work orders for each machine resource
in the job shop.

Instead of using simple routines that just translate inputs into expected outputs, the NIST prototype
employs a discrete-event simulation of a job shop and an integrated data collection system. A
commercial discrete-event simulation engine was modified to:

Create Loads (the groups of parts being produced via the manufacturing process) based on order-

related information provided by the dispatcher.

Use shop floor Resources to process Loads according to the work orders produced by the dispatcher.

Produce status messages describing the events that occurred as a result of the simulated

manufacturing activities.

Three different COTS discrete-event simulation systems were modified in this manner. Since two
scheduling systems are also supported, six different prototype configurations can be run. Further
information about the modification to the simulations can be found in [13,14].

When changes in the state of the simulated job shop occur, the simulated job shop creates status
messages and stores the status messages in a file as ASCII strings. A software component called the
Status Manager reads the status messages and updates a database that maintains the current factory
status. An update utility is used to interact with the Status Manager to extract the current state of the job
shop and use this information to update the database of the scheduling application being used in this
implementation. The update utility automatically runs to update the database before the creation of new

Simulation
of
. Job Sh
Scheduler Schedules > Dispatcher Work Orders > oand op

Data Collection

System

Status
Current Status

Status
Scheduler Manager |&

Messages

Data Store

Factory
Status

Figure 3 - Initial NIST Prototype Architecture

schedules by the scheduling application.
The motivation for this architecture is to provide a flexible, modular infrastructure that supports the
integration of different scheduling and simulation applications.

3.3 Current NIST Prototype Architecture

Once the three prototypes had been developed and demonstrated, their architectures were analyzed
to assess the effort that would be required to integrate the systems with other manufacturing applications.
The use of file passing mechanisms for information exchange and the lack of clear functional boundaries
for system components were identified as common characteristics of the architectures that were possible
impediments to further integration. NIST made significant modifications to its prototype architecture to
mitigate these impediments to integration and to provide improved support for manufacturing system
automation and performance evaluation.

Figure 4 shows the current NIST prototype architecture as a Unified Modeling Language (UML) class
diagram [15]. The architecture has been divided into subsystems that represent functional components
that collaborate to perform the system's work. The Scheduler, Dispatcher, and Status Manager
subsystems provide capabilities similar to their like-named functional components from the initial
prototype architecture. The Executor subsystem provides similar capabilities to the discrete-event
simulation of the integrated shop floor/shop data collection system from the initial prototype. In the
current architecture, a new subsystem called the System Manager is present. It coordinates the activities
of the other subsystems and provides an interface through which external systems can interact with this
system. Another new subsystem, called the Monitor, provides for the implementation of automated
performance evaluation and rescheduling capabilities. Several concurrent, interacting monitoring
applications can be supported by this subsystem. Each application may use different criteria for
evaluating shop floor performance and automatically generate reschedule requests for processing by the
System Manager. Additionally, monitoring applications can be developed that extract and present the
status-related information necessary for shop floor performance evaluation by human shop floor
managers. Finally, to illustrate how other applications can be integrated with the subsystems of the
scheduling system, an Order Entry Application was developed. It has been included in the diagram,
though such an application is logically external to the system boundary.

In the Figure 4 diagram, the type of information that is exchanged between subsystems is specified by
named dependencies, which are denoted by the arrows with dotted lines between subsystems. This
differs from the presentation of information exchange requirements in the previous architecture diagrams
where data flow between components was emphasized. Internally, each subsystem contains one or
more software objects. These objects may be: databases; applications that provide the mechanisms for
implementing the requirements of the subsystem (indicated with the control stereotype); or objects which
implement the interface through which other applications may interact with this subsystem (indicated with
the interface stereotype). Additional information about the interface objects is presented below.

With the exception of the Monitor subsystem, each subsystem contains an interface object that is a
Common Object Request Broker Architecture (CORBA) server that implements that subsystem’s interface
[16]. Components of other subsystems, and external applications such as the Order Entry Application,
may only interact with a subsystem through the methods provided by its interface. Each subsystem'’s
server contains the logic to collaborate with the other objects in the subsystem to provide the subsystem’s
required functionality. To provide their functionality, the objects in the Monitor subsystem need only be
clients to the services provided by the server objects in the other subsystems. Through the extension of
the architecture with the System Manager subsystem and the use of CORBA technology as the
mechanism for subsystem communication, integration of the system with other manufacturing
applications can be accomplished through a widely accepted integration technology. Platform and
language dependencies have been reduced, and integration and implementation possibilities have been
increased. In addition, the Monitor subsystem provides support for implementing system performance
evaluation functionality.

<< Control>>
OrderEntry
Applicaton

.“.f‘?.>

New Order |

System Manager

Figure 4 - Current NIST Prototype Architecture

<< Interface>>
System
Manager

Reschedule Directives
L New Order Info

=

Reschedule Directives

)< --- -

Monitor

Scheduler
<<Control>> <<Interface>>
Commercial Scheduler
Scheduler
Scheduler <<Control>>
Data Update
Store Agent

New Schedule Info

Current Shop Floor Status

Status Manager

<<Control>>
Schedule
Performance
Monitor

<<Control>>

Level
Monitor

Manual Evaluation
Order Support Monitor

Shop Floor Status
...................V

<< Interface>>
Status
Manager

Factory

Status
Data

Status Messages

Dispatcher

<< Interface>>
Dispatcher

Work Orders

Executor

>

<< Interface>>
Executor

<<Control>>

Shop Floor/
Data Coll
Simulator

3.3.1 Interface Classes and an Interaction Diagram for the Current NIST Architecture

Figure 5 is a UML class diagram that shows the details of the classes that define the interface of each
subsystem. Prototype implementations of the NIST architecture were developed using CORBA servers
whose interfaces were based on these classes. Figure 6 is a UML interaction diagram that shows how
the servers interact to incorporate new order information into the system by creating and implementing a
new schedule.

4 Summary

During the last 10 years, many manufacturing companies have invested in modern computer-based
technologies. These technologies have made it possible to gather data about the events on the shop floor
as they are happening. The availability of this data has spawned a new challenge...how to distribute and
analyze this information so that improved manufacturing processes can result. Towards this end, a
project at NIST has focused on developing methods for integrating commercial scheduling software with
commercial shop floor data collection software. Achieving this integration will require the development of
new interface and information exchange standards. NIST is working with industry, vendors, and users to
develop these standards. An analysis of the architectures of several prototype systems developed to test
integration approaches and to foster standards development and adoption has been presented in this
paper.

<<Interface>> <<Interface>>
System_Manager Scheduler
Accept_new_order (the_order : Order) Accept_new_order (the_order : Order)

<<Interface>>
Dispatcher

Incorporate_new_schedule_info (a_schedule : Schedule, an_order_list : List<Order>)
Provide_next_job_info (a_resourceid : String) : Job
Acknowledge_job_processing_started (a_resourceid : String, a_job : Job) : Boolean
Provide_next_load_to_release () : Load_release_request
Acknowledge_load_released (a_loadid : String) : Boolean

<<Interface>>
Status_Manager

Process_status_message (status_message : String)
Provide_load_info (Loadid : String) : Load
Provide_load_list () : List<String>
Provide_resource_info (Resourceid : String) : Resource O~
Provide_resource_list () : List<String> NOTE 1

The monitor subsystem does not contain
server objects. Therefore, no monitor
interface class is presented.

NOTE 2:
<<Interface>> The word "job" in the Dispatcher and Executor
Executor interfaces refers to the manufacturing work
Incorporate new job info () orders that the Executor is to process.

Figure 5 - Subsystem Interface Classes 8

|,:Mam__ﬂnwﬁﬂ%_ System Manager Scheduler

Status Manager

Accept_new_order

"Add new order

Accept new_order to database”

Monitoring
Application

"Request updated Load &
Resource information”

"Determine If a
reschedule is required”

Create_new_schedule

Create_new_schedule "Request current Load &
Resource status”

"Create the schedule"

Dispatcher

Incorporate_new_schedule_info

Process_status_message

Executor

"Merge the new schedule
data with the current data"

Incorporate_new_job_info

Provide_next_load_to_release

Acknowledge_load_released

Process_status_message

Provide_next_job_info

Acknowledge_job_processing_started

Figure 6 - Sequence diagram showing new order incorporation via Monitor-initiated new schedule generation

5 Acknowledgements

Work described in this paper was sponsored by the U.S. Navy Manufacturing Science and Technology
Program and the NIST Systems Integration for Manufacturing Applications (SIMA) Program. The work
described was funded by the United States Government and is not subject to copyright.

6 Disclaimer

Certain commercial equipment, instruments, or materials may be identified in this paper in order to
facilitate understanding. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

7 References

[1] Jones, A. and luliano, M, “Virtual Manufacturing Testbed,” Proceedings of the SMC’97, Vol. 1, 737-
742, Orlando, Florida, October, 1997.

[2] Jones, A., Rabelo, L., and Yih, Y., “A hybrid approach for real-time sequencing and scheduling,”
International Journal of Computer Integrated Manufacturing, Vol. 8, no.2, 145-154, 1995.

[3] Jones, A., Riddick, F., and Rabelo, L., “Development of a Predictive-Reactive Scheduler Using
Genetic Algorithms and Simulation-based Scheduling Software,” Proceedings of the AMPST'96, 589-598,
Bradford, England, March, 1996.

[4] Jones, A. and McLean, C., “A Proposed Hierarchical Control Model for Automated Manufacturing
Systems,” Journal of Manufacturing Systems, Vol. 5, No.1, 15-25, 1986.

[5] Simpson, J., Hocken, R., and Albus, J., “The Automated Manufacturing Research Facility,” Journal of
Manufacturing Systems, Vol. 1, No. 1, 17-31, 1982.

[6] Jackson, R. and Jones, A., “An Architecture for Decision Making in the Factory of the Future,” ORSA
INTERFACES - Special issue on Manufacturing, Vol. 17, No. 6, 15-28, 1987.

[7] Davis, W. and Jones, A., “A Real-Time Production Scheduler for a Stochastic Manufacturing
Environment,” International Journal of Computer Integrated Manufacturing, Vol. 1, No. 2, 101-112, 1988.
[8] Jones, A., Barkmeyer, E., and Davis, W., “Issues in the Design and Implementation of a System
Architecture for Computer Integrated Manufacturing,” International Journal of Computer Integrated
Manufacturing - Special issue on CIM Architecture, Vol. 2., No. 3, 65-76. 1989.

[9] Bloom, H., “Technical Program Description: Systems Integration for Manufacturing Applications,”
NISTIR 5476, National Institute of Standards and Technology, Gaithersburg, MD, July, 1994.

[10] Fowler, J., “Systems Integration for Manufacturing Applications Technical Program Plan,” NISTIR
5986, National Institute of Standards and Technology, Gaithersburg, MD, March, 1997.

[11] Fowler, J., “Systems Integration for Manufacturing Applications 1998 Annual Report,” NISTIR 6339,
National Institute of Standards and Technology, Gaithersburg, MD, April, 1999.

[12] Riddick, F. and Loreau, A., “Models for Integrating Scheduling and Shop Floor Data Collection,”
Proceedings of IASTED MIC'97, 276-279, Vienna, Austria, February, 1997.

[13] Riddick, F.,"Using Simulation as a Proxy for a Real Shop Floor and Data Collection System," NISTIR
6173, National Institute of Standards and Technology, Gaithersburg, MD, 1998.

[14] Riddick, F., "Reactive Scheduling System Implementations Using a Simulated Shop Floor,"
Proceedings of IASTED Applied Modelling and Simulation Conference, 104-109, Honolulu, Hawaii,
August, 1998.

[15] Erikson, H., and Penker, M., UML Toolkit, (New York; Wiley, 1998)

[16] Object Management Group, The Common Object Request Broker: Architecture and Specification, 2.2
ed., (OMG, 1998)

[17] Jones, A. and McLean, C., "Industrial Need: Production Standards," NISTIR 6058, National Institute
of Standards and Technology, Gaithersburg, MD, 1997.

10

